Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Microbiol Spectr ; 11(3): e0464022, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2298025

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health threat globally, especially during the beginning of the pandemic in 2020. Reverse transcription-quantitative PCR (RT-qPCR) is utilized for viral RNA detection as part of control measures to limit the spread of COVID-19. Collecting nasopharyngeal swabs for RT-qPCR is a routine diagnostic method for COVID-19 in clinical settings, but its large-scale implementation is hindered by a shortage of trained health professionals. Despite concerns over its sensitivity, saliva has been suggested as a practical alternative sampling approach to the nasopharyngeal swab for viral RNA detection. In this study, we spiked saliva from healthy donors with inactivated SARS-CoV-2 from an international standard to evaluate the effect of saliva on viral RNA detection. On average, the saliva increased the cycle threshold (CT) values of the SARS-CoV-2 RNA samples by 2.64 compared to the viral RNA in viral transport medium. Despite substantial variation among different donors in the effect of saliva on RNA quantification, the outcome of the RT-qPCR diagnosis was largely unaffected for viral RNA samples with CT values of <35 (1.55 log10 IU/mL). The saliva-treated viral RNA remained stable for up to 6 h at room temperature and 24 h at 4°C. Further supplementing protease and RNase inhibitors improved the detection of viral RNA in the saliva samples. Our data provide practical information on the storage conditions of saliva samples and suggest optimized sampling procedures for SARS-CoV-2 diagnosis. IMPORTANCE The primary method for detection of SARS-CoV-2 is using nasopharyngeal swabs, but a shortage of trained health professionals has hindered its large-scale implementation. Saliva-based nucleic acid detection is a widely adopted alternative, due to its convenience and minimally invasive nature, but the detection limit and direct impact of saliva on viral RNA remain poorly understood. To address this gap in knowledge, we used a WHO international standard to evaluate the effect of saliva on SARS-CoV-2 RNA detection. We describe the detection profile of saliva-treated SARS-CoV-2 samples under different storage temperatures and incubation periods. We also found that adding protease and RNase inhibitors could improve viral RNA detection in saliva. Our research provides practical recommendations for the optimal storage conditions and sampling procedures for saliva-based testing, which can improve the efficiency of COVID-19 testing and enhance public health responses to the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Saliva , Clinical Laboratory Techniques/methods , RNA, Viral/genetics , RNA, Viral/analysis , Endoribonucleases
2.
J Med Virol ; 95(2): e28478, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173236

ABSTRACT

Patients with severe COVID-19 often suffer from lymphopenia, which is linked to T-cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS-CoV-2-infected cells. We adopted a reverse time-order gene coexpression network approach to analyze time-series RNA-sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS-CoV-2-activated nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID-19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross-referencing our transcriptomic and epigenomic data sets revealed that coupling NF-κB and IRF1 pathways mediate programmed death ligand-1 (PD-L1) immunosuppressive programs. Interestingly, we observed higher PD-L1 expression in Omicron-infected cells than SARS-CoV-2 infected cells. Blocking PD-L1 at an early stage of virally-infected AAV-hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS-CoV-2-mediated NF-κB and IRF1-PD-L1 axis may represent an alternative strategy to reduce COVID-19 severity.


Subject(s)
COVID-19 , Lymphopenia , Animals , Mice , SARS-CoV-2/metabolism , B7-H1 Antigen , Immune Evasion , NF-kappa B/metabolism , Up-Regulation , Cytokines/metabolism
3.
J Biomed Sci ; 29(1): 49, 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1923546

ABSTRACT

BACKGROUND: With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. METHODS: We report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. RESULTS: A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. CONCLUSIONS: These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
4.
PLoS Pathog ; 17(8): e1009758, 2021 08.
Article in English | MEDLINE | ID: covidwho-1352713

ABSTRACT

Since the pandemic of COVID-19 has intensely struck human society, small animal model for this infectious disease is in urgent need for basic and pharmaceutical research. Although several COVID-19 animal models have been identified, many of them show either minimal or inadequate pathophysiology after SARS-CoV-2 challenge. Here, we describe a new and versatile strategy to rapidly establish a mouse model for emerging infectious diseases in one month by multi-route, multi-serotype transduction with recombinant adeno-associated virus (AAV) vectors expressing viral receptor. In this study, the proposed approach enables profound and enduring systemic expression of SARS-CoV-2-receptor hACE2 in wild-type mice and renders them vulnerable to SARS-CoV-2 infection. Upon virus challenge, generated AAV/hACE2 mice showed pathophysiology closely mimicking the patients with severe COVID-19. The efficacy of a novel therapeutic antibody cocktail RBD-chAbs for COVID-19 was tested and confirmed by using this AAV/hACE2 mouse model, further demonstrating its successful application in drug development.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Disease Models, Animal , 3T3 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Chlorocebus aethiops , Dependovirus/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Transduction, Genetic , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL